Referencement gratuit

ENCELADE

Un satellite de Saturne bien fascinant

Encelade, un satellite de Saturne, on s'interroge beaucoup sur l'histoire de son évolution et de sa composition. Tout comme Europe et peut être Cérès. Il est une des régions du Système Solaire où une activité biologique est possible !

capture06-2-1.jpgCette petite lune de saturne, a été survolée en 1980 et août 1981 par Voyager 2 et déjà les images et les informations transmises sur Terre plongeaient les scientifiques dans l'expectative, les déroutaient. Ces images révélaient un monde glacé fait de régions très triturées et complexes où se mêlent fissures, crevasses et autres dispositifs de près de 1 km de hauteur et d'endroits bien plus plats aux reliefs quasi inexistants et exempts de cratères d'impacts. Cela signifiait qu'il y a encore moins de 100 millions d'années, une activité géologique existait sur Encelade.

Mais rien ne pouvait l'expliquer ! Comment une lune aussi petite pouvait devenir suffisamment chaude pour fondre et façonner de tels paysages ? En effet, il est difficile pour un corps si petit de conserver la chaleur interne nécessaire pour produire un phénomène géophysique de cette ampleur, mais il le fait. Bref, on attendait beaucoup de Cassini.

Puis la sonde Cassini a survolé Encelade par trois fois et les scientifiques vont de surprises en surprises.

Encelade apparaît bien plus complexe qu'imaginé d'autant plus que des molécules organiques, qui sur Terre sont à la base des briques du vivant, ont été découvertes !

capture01-7.jpgLes données de Cassini sont sans équivoque. Encelade est non seulement un monde actif mais également entouré d'une atmosphère concentrée au-dessus du Pôle Sud. Cette atmosphère est faite de vapeur d'eau et l'on retrouve en faible quantité des traces d'azote, du dioxyde de carbone et d'autres molécules organiques à base de carbone. Le Pôle Sud est la région la plus chaude d'Encelade, environ - 183 °C au lieu de - 203 °C température moyenne constatée dans toutes les autres régions de la lune. La région serait très active et une activité géologique a dû exister il y a de moins de 1000 ans à seulement une dizaine d'années.

Les images de Cassini montrent des fissures parallèles (raies tigrées) et identifiées comme les zones les plus chaudes. Mais ce n'est pas tout, de la vapeur et des particules fines d'eau glacée s'en dégagent. Bien que la sonde n'a pas observé directement des geysers ou un cryo-volcanisme, tout laisse à penser qu'il existe une étendue d'eau liquide sous la surface.

capture23-2.jpgLes briques du vivant

La matière qui s'échappe de ses régions enrichit l'anneau E de Saturne. Mais le plus surprenant reste la détection d'éléments organiques simples dans ces fissures. Ces produits organiques simples incluent l'anhydride carbonique et des molécules comme le méthane, l'éthane et l'éthylène. Précisons que dans ce cas précis le méthane n'est pas produit par un organisme vivant comme sur Terre. Il s'agit d'un gaz fondamentalement naturel.

Bref, sur Encelade, on a pratiquement la confirmation d'eau liquide, des produits organiques simples et de la vapeur d'eau. Chauffés et mélangés ensemble cela pourrait former des blocs primordiaux à la base du vivant !

Avec 504 kilomètres de diamètre, Encelade fut découvert par l'astronome germano-britannique William Herschel en 1789, Il s'agit du sixième satellite de Saturne par la taille et du quatorzième par son éloignement. soit presque sept fois inférieur à celui de la Lune. Ces dimensions réduites lui permettraient de tenir à l'intérieur des États du Colorado ou de l'Arizona, voire sur l'île de Grande-Bretagne.

La sonde Cassini avait fait sensation en photographiant pour la première fois des panaches de glace sur Encelade, un satellite doté d'une activité géologique intense. Ces panaches, constitués de minuscules grains de glace, de vapeur et de sels de sodium, s'échappent par des fractures de la croûte au niveau du pôle Antarctique et alimentent l'anneau E de Saturne.

Selon les images de la sonde de Cassini, Encelade est recouvert d'une couche aux reflets bleutés, caractéristique de la neige d'eau fraîche. La neige serait épaisse d'une centaine de mètres, ce qui indique qu'il neige sur Encelade depuis au moins 100 millions d'années. Les geysers, et la source de chaleur souterraine qui les alimente, seraient donc actifs depuis très longtemps.

capture02-7.jpgEncelade tourne autour de Saturne au sein de l'anneau le plus externe et le plus ténu de tous, appelé anneau E ; cet anneau serait alimenté en permanence en particules par les « éruptions volcaniques » actuelles (ou récentes) d'Encelade.

Ce satellite est l'un des quatre seuls objets du système solaire (avec le satellite de Jupiter, Io, celui de Neptune, Triton, et bien sûr la Terre) sur lesquels des éruptions ou des éjections de matière ont pu être directement observées.

Désignation                                                                                                                                                                                                                                                       

Il tire son nom d'Encelade, un Géant de la mythologie grecque, vaincu par Athéna lors de la Gigantomachie (la guerre des dieux contre les Géants) et enseveli sous l'île de Sicile. On le connaît également sous les désignations Saturne II ou S II Enceladus.

Encelade fait le tour de Saturne en 1,37 jour (soit un peu moins de 33 heures).

Avant le début des années 1980, Encelade n'avait jamais été vu autrement que comme un minuscule point blanc orbitant autour de Saturne. Les seules données connues étaient les caractéristiques de son orbite, et une estimation de sa masse, sa densité.

La surface d'Encelade est plutôt lisse, jeune et brillante, et le satellite montre des signes évidents d'activité récente (à l'échelle de temps géologiques). Cette découverte fut à l'époque une grande surprise pour la communauté scientifique, aucun modèle ne pouvant alors expliquer qu'un corps aussi petit et aussi froid puisse être encore en activité.

Un survol audacieux de la sonde le 12 mars 2008, à seulement 48 km de la surface, par Cassini. Les premiers résultats révélèrent une température plus élevée que prévue et la présence de composés organiques voire d'eau liquide

Orbite                                                                                                                                                                                                                                                            

Encelade se trouve de plus en résonance 2:1 avec une autre lune de Saturne, Dioné, il parcourt donc exactement deux orbites pendant que Dioné de son côté fait un tour autour de la planète.

La distance moyenne entre Encelade et Saturne est d'environ 180 000 kilomètres, soit trois fois le rayon de cette planète, dont il fait le tour en 32 heures 53 minutes environ. Comme beaucoup de satellites naturels, Encelade est en rotation synchrone autour de Saturne, la durée de son orbite étant égale à celle de sa rotation sur lui-même, il présente ainsi toujours la même face vers la planète, comme le fait la Lune avec la Terre par exemple.

L'orbite d'Encelade est quasiment circulaire, avec une excentricité de seulement 0,0045, et est incliné de 0,019° par rapport au plan de l'équateur de Saturne.

Surface                                                                                                                                                                                                                                                              

La surface d'Encelade est constituée de plusieurs types de terrains, certains secteurs étant fortement cratérisés (donc vieux), tandis que d'autres sont totalement dépourvus de cratères d'impact (donc de formation récente). Ces zones, anciennes ou récentes, montrent toutes des signes de déformations très complexes et très variées, parfois de type cassant (failles, rifts, ...) parfois de type ductile (rides et sillons)

capture09-2.jpgCompte tenu des modèles théoriques sur la fréquence des impacts météoritiques dans cette partie du système solaire, l'absence de cratère dans les plaines montre que certaines de ces régions sont âgées de moins de 100 millions d'années, et qu'il existe donc un processus, probablement de « volcanisme aqueux », qui permet le renouvellement de la surface, et qui expliquerait que la glace « propre » reste dominante à la surface d'Encelade.

La glace récente et « propre » qui recouvre la surface confère à Encelade l'albédo le plus élevé de tous les objets du système solaire (albédo géométrique visuel de 0,99±0,06). En conséquence, puisqu'il reflète la quasi-totalité du rayonnement qu'il reçoit de la part du Soleil, la température moyenne à sa surface est extrêmement faible, de l'ordre de 75 K à « midi » (soit -198℃).

Cratères d'impact

Cratères dégradés par relaxation visqueuse. Dans la partie centrale de l'image, seules quelques traces du rebord circulaire et le centre formé en dôme permettent de deviner la présence d'anciens cratères.

Les cratères d'impact sont des marqueurs importants de l'histoire géologique d'un objet, tout d'abord en indiquant à partir de quelle époque après la période de formation initiale la surface est devenue suffisamment solide pour conserver les traces des impacts ; ensuite, en observant les dégradations subies par les cratères, voire l'absence totale de cratère comme c'est le cas sur certaines parties d'Encelade, ils gardent les traces chronologiques des déformations subies par la croûte du satellite depuis l'impact.

Tectonique                                                                                                                                                                                                                                               

Plusieurs types de formations tectoniques sur Encelade, parmi lesquelles des groupes de failles linéaires et de grandes bandes ridées curvilignes. Les résultats ultérieurs obtenus par Cassini suggèrent que les mouvements tectoniques sont la principale cause de déformation de la croûte sur Encelade. L'une des manifestations les plus spectaculaires de ces mouvements tectoniques sont des rifts (appelés fossae sur Encelade) qui peuvent atteindre près de 200 kilomètres de long et 5 à 10 kilomètres de largeur, sur un kilomètre de profondeur. Ces formations semblent relativement jeunes puisqu'elles coupent à travers d'autres formations de type tectonique, et que leurs reliefs apparaissent abrupts et anguleux le long des falaises.

Autre type de déformation tectonique, les sulci sont de grandes bandes de « rides » et de « sillons » plus ou moins parallèles, que l'on trouve souvent à la séparation entre les régions de plaines plutôt planes et les régions de cratères. Des formations du même type sont observées sur Ganymède, un des satellites de Jupiter, mais contrairement à ce que l'on trouve sur ce dernier, les rides des sulci d'Encelade ne sont pas forcément toujours bien parallèles, et de nombreuses zones présentent une forme en chevron rappelant celle de certains glaciers terrestres (mais les processus de formation sont probablement très différents). Les images de Cassini ont également permis de découvrir des « taches noires », de 125 à 750 mètres de large, alignées parallèlement aux lignes de fracture.

Le pôle sud et sa région

L'inventaire des différentes formations de la surface d'Encelade montre que celle-ci a été modelée par une histoire géologique à la fois longue et complexe, dont l'épisode le plus récent semble lié à une région centrée sur le pôle sud. Les images prises par la sonde Cassini pendant le survol effectué le 14 juillet 2005 ont permis d'étudier en détails cette « nouvelle » région qui n'apparaissait pas clairement sur les images précédentes de Voyager 2.

Cette zone, qui englobe le pôle sud jusqu'à une latitude de 55° sud environ, est couverte de fractures tectoniques et de failles mais ne possède aucun cratère (ou du moins aucun cratère visible avec la résolution des instruments de la sonde), suggérant ainsi qu'il s'agit de la surface la plus jeune d'Encelade. Les modèles concernant le taux théorique d'impacts dans cette région du système solaire permettent d'en déduire que cette région serait âgée de 10 à 100 millions d'années au maximum.

Au centre de cette région se trouvent quatre grandes failles d'environ 2 kilomètres de large sur 130 kilomètres de long et 500 mètres de profondeur. Elles sont bordées par des arêtes de 100 mètres de haut et de 2 à 4 kilomètres de large. Officieusement baptisées « rayures de tigre» et séparées d'environ 35 km, elles sont presque exactement parallèles, et une analyse attentive des images, notamment des intersections entre les différentes failles de la région, montre que ces fractures sont les plus récentes formations géologiques de la zone.

capture08-2-1.jpgL'instrument VIMS de la sonde Cassini (Visible and Infrared Mapping Spectrometer - spectromètre dans le domaine visible et infrarouges) a montré que la matière présente autour de ces « rayures de tigre » possède un spectre différent de celui du reste de la surface d'Encelade, et a également détecté des cristaux de glace à l'intérieur des rayures, ce qui implique qu'elles sont très jeunes (moins de 1000 ans, peut-être même seulement 10 ans). En effet, lorsque de l'eau liquide ou de la vapeur se condense en glace, il se forme de la glace cristalline. Or, l'action des rayons UV en provenance du Soleil et du rayonnement cosmique transforme en surface cette glace cristalline en glace amorphe en seulement quelques dizaines d'années. La présence de glace cristalline au niveau des « rayures de tigre » montre donc que cette glace s'est formée très récemment, soit par l'arrivée d'eau liquide qui a gelé sur place, soit par de la vapeur d'eau qui a givré. http://photojournal.jpl.nasa.gov/target/Enceladus

L'environnement de l'une de ces rayures du pôle sud a été observé à très haute résolution lors du survol du 14 juillet 2005, révélant une région extrêmement déformée par les mouvements tectoniques et couverte de gros blocs de glace dont la taille varie de 10 à 100 mètres de large. L'origine de ces blocs reste inconnue.

La frontière entre cette région très active centrée sur le pôle sud et le reste de la surface est marquée par des bandes de falaises et de vallées parallèles. La forme, l'orientation et la position de celles-ci indiquent qu'elles ont été causées par une modification de la forme globale d'Encelade, et notamment par une diminution du diamètre dans la direction de l'axe de rotation, qui pourrait être due à une modification de la période de rotation, ou bien à une réorientation du satellite engendrée par la formation d'un diapir large et peu dense dans le manteau glacé.

Atmosphère                                                                                                                                                                                                                                                     

La magnétosphère de Saturne, montrant la déflexion des lignes du champ magnétique autour d'Encelade, causée par la présence d'une atmosphère.

À la suite du passage de Voyager 2 au début des années 1980, les scientifiques émirent l'hypothèse qu'Encelade pourrait posséder des cryovolcans encore actifs, en se basant notamment sur la relative jeunesse de sa surface, et sur la position du satellite au cœur de l'anneau E de Saturne. Encelade semblait être la source des particules constituant celui-ci, probablement par un phénomène d'éjection de vapeur d'eau provenant des entrailles du satellite. L'une des conséquences visibles de ce cryovolcanisme actif devait être la présence d'une atmosphère, même très ténue, autour d'Encelade. Ce dernier est trop petit pour pouvoir retenir une atmosphère autour de lui par gravité, la présence d'une telle atmosphère serait donc la preuve qu'il existe un mécanisme récent ou même encore actif qui permet de la renouveler.

Les données collectées par plusieurs des instruments de la sonde Cassini ont permis de confirmer cette hypothèse. En premier lieu, le magnétomètre situé à bord de la sonde a mesuré, au cours des trois survols du 17 février, 9 mars et 14 juillet 2005, une déviation des lignes du champ magnétique de Saturne autour d'Encelade - cette déviation mesurée est cohérente avec les modèles théoriques qui prédisent qu'elle est provoquée par les courants électriques engendrés par les interactions entre les particules ionisées de l'atmosphère et le champ magnétique de la planète. Des analyses plus poussées de ces mesures ont également permis d'identifier la composition chimique des particules ; dans ce cas, se sont des molécules de vapeur d'eau ionisée qui furent observées. Lors du survol très rapproché du 14 juillet, l'équipe en charge du magnétomètre montra que les gaz de l'atmosphère d'Encelade sont concentrés au-dessus de la région du pôle sud, la densité de l'atmosphère étant beaucoup plus faible voire inexistante lorsque l'on s'éloigne de cette zone.

Pendant le survol rapproché de juillet, alors que la sonde traversait le nuage de gaz centré sur le pôle sud, le spectromètre de masse détecta une nette augmentation de la quantité de vapeur d'eau (H2O), mais également du diazote (N2) et du dioxyde de carbone (CO2). Enfin, le CDA (Cosmic Dust Analyzer - analyseur de poussières cosmiques) détecta lui aussi une augmentation du nombre de particules à l'approche d'Encelade, et notamment de microcristaux de givre, confirmant ainsi que le satellite est l'une des sources principales alimentant l'anneau E en matière. L'analyse des données du CDA et du INMS suggère que le nuage que la sonde a traversé est émis par ou très près des « rayures de tigre ».

Cryovolcanisme                                                                                                                                                                                                                               

L'atmosphère d'Encelade ne peut pas perdurer durablement sur un corps aussi petit avec une aussi faible gravité de surface, soit 0,006 fois la gravité terrestre. Si elle est encore présente, c'est qu'elle est récente et n'a pas encore eu le temps de s'échapper dans l'espace, ou qu'il existe un mécanisme permettant de la régénérer continuellement.

Les données acquises par les instruments INMS et CDA de Cassini ont déjà montré que cette atmosphère est située non seulement exclusivement autour du pôle sud, mais que la densité de matière est maximale aux alentours des « rayures de tigre ». D'autres mesures effectuées à l'aide du spectromètre infrarouge de la sonde (CIRS) au cours du même survol de juillet 2005 ont mis en évidence la présence de « point chauds », situés eux aussi très près des « rayures de tigre ». La température moyenne de cette région est de 85~90 kelvins, soit une quinzaine de degrés de plus que ce que prévoit la théorie en ne tenant compte que du rayonnement reçu de la part du Soleil. De plus, en augmentant encore la résolution de la mesure, certaines régions à l'intérieur des « rayures de tigre » ont été mesurées à des températures de 140 kelvins, bien que des températures encore plus élevées puissent exister, mais la résolution des instruments de Cassini ne permet pas de les différencier.

Les « rayures de tigre » sont donc devenues les lieux les plus probables de la source d'émission de matière dans l'atmosphère d'Encelade. La confirmation visuelle de cette émission de gaz et de poussières est venue en novembre 2005, lorsque Cassini observa des jets de particules de glace s'élevant à partir de la région du pôle sud. Les images prises à cette date montrent de nombreux jets très fins s'étendant dans toutes les directions, ainsi qu'un immense nuage de gaz, plus faible et plus diffus, qui s'étend à presque 500 kilomètres au-dessus de la surface d'Encelade. La plupart des particules de glace émises dans ces jets semblent finir par retomber à la surface, une fraction infime, environ un pourcent, s'échappant finalement pour aller alimenter l'anneau E.

Ces observations montrent que, bien que le terme d'atmosphère soit toujours utilisé, celle-ci n'est en fait qu'un immense nuage de gaz et de poussières, la partie la plus diffuse des jets situés au pôle sud.

Le mécanisme à l'origine de ce dégazage reste encore en bonne partie inconnu, et l'explication du phénomène dépend en grande partie du modèle utilisé pour la structure interne d'Encelade. Parmi les deux hypothèses les plus développées, l'une suggère que ces jets pourraient provenir de poches de vapeur d'eau sous pression situées sous la surface, à la manière des geysers terrestres. L'autre hypothèse fait intervenir un mécanisme de sublimation de la glace de surface, réchauffée par la présence en profondeur d'une mélasse plus ou moins liquide et « chaude » composée d'eau et d'ammoniac.

Structure et composition interne

L'activité géologique d'Encelade est assez étonnante pour un corps aussi petit, et l'origine de la source d'énergie déclenchant cette activité, ainsi que les modalités de celle-ci (qui implique la présence de liquide pour expliquer le magmatisme) restent encore aujourd'hui mal comprises.

Les estimations de la masse d'Encelade réalisées à partir des données de Voyager suggéraient qu'il était composé presque exclusivement de glace d'eau. Depuis, l'équipe en charge de la navigation de la sonde Cassini a recalculé cette masse en se basant sur les effets induits sur la trajectoire de la sonde par le champ gravitationnel du satellite, conduisant à une valeur nettement plus élevée de 1,608×103 kg/m³1 pour la masse volumique. Cette densité est supérieure à celle des autres satellites de Saturne comparables à Encelade, et indique que la proportion de silicates et de fer (donc d'éléments radioactifs) à l'intérieur de celui-ci est plus importante que pour les autres. Ainsi, l'intérieur d'Encelade pourrait avoir connu un épisode de réchauffement plus important que ses compagnons sous l'effet des éléments radioactifs.

Modèle dit du « geyser froid ». De l'eau s'échappe de poches situées en profondeur à une température proche du point de fusion (273 K), pour se sublimer à la surface du satellite. La radioactivité du noyau, ainsi que l'action des forces de marée, contribuent à maintenir ces poches à température.

En ce qui concerne les processus qui gouvernent l'activité actuelle d'Encelade, l'hypothèse actuellement la plus aboutie (mars 2006) est celle dite du « geyser froid ». Selon ce modèle, les jets de vapeur et de particules de glace émanant des « rayures de tigre » proviendraient de réservoirs souterrains d'eau liquide sous pression, et s'échapperaient par des bouches de sorties ayant « percé » la croûte à cet endroit. Ces poches d'eau seraient situées à quelques dizaines de mètres sous la surface seulement. Cependant, la source de chaleur permettant à cette eau d'atteindre le point de fusion (273 K ou 0℃) n'est que partiellement comprise. Les silicates différenciés en un noyau rocheux au centre d'Encelade contribuent pour une part au réchauffement par l'intermédiaire de la radioactivité, tout comme les frictions engendrées par les forces de marée que provoquent la présence de Saturne et des autres satellites, notamment Dioné, mais le bilan énergétique de l'ensemble est somme toute insuffisant pour expliquer que la glace située sous la surface ait pu atteindre une telle température. Il est possible que des perturbations aient provoqué, dans un passé plus ou moins récent, des modifications de l'orbite d'Encelade, qui auraient accru de manière significative l'effet des forces de marée, notamment en « forçant » l'ellipticité de l'orbite, pour finalement accroître de manière importante la température interne du satellite. Bien qu'il ne s'agisse toujours là que d'une hypothèse, les réminiscences de cet échauffement passé, ainsi que la radioactivité et les forces marémotrices actuelles pourraient suffire à expliquer l'activité géologique contemporaine.

Les modèles précédemment proposés prenaient pour hypothèse l'existence d'un niveau partiellement liquide en profondeur, entre la couche de glace superficielle et les silicates du noyau, qui serait composé d'un mélange d'eau et d'ammoniac (NH3). Le mélange eau/ammoniac présente en effet un eutectique, dont la température de fusion est de 170 K (-100℃, à la pression atmosphérique). La composition de cet eutectique est d'1/3 d'ammoniac pour 2/3 d'eau, et, de même que pour le modèle du « geyser froid », les jets de vapeur observés seraient constitués de ce mélange remontant à la surface. Cependant, les proportions très faibles d'ammoniac mesurées par Cassini dans les jets du pôle sud semblent incompatibles avec cette hypothèse, ce qui explique qu'elle soit remise en cause, bien qu'elle ne puisse être totalement écartée.

Pour certains chercheurs, les trois ingrédients de la vie (chaleur, eau, molécules organiques) seraient donc présents sur Encelade.

RETOUR

Créer un site gratuit avec e-monsite - Signaler un contenu illicite sur ce site