Referencement gratuit

LA TERRE

La troisième planète du système solaire par ordre de distance croissante au Soleil, et la quatrième par taille et par masse croissantes.

c55.jpgIl s'agit de la plus grande et la plus massive des quatre planètes telluriques, les trois autres étant Mercure, Vénus et Mars. La terre se trouve dans la zone habitable du système solaire. La terre ce trouve à une distance du soleil de 0,00001 année lumière soit 8 minutes lumière

La Terre interagit avec les autres objets spatiaux, principalement le Soleil et la Lune. Actuellement, la Terre orbite autour du Soleil en 365,26 jours solaires ou une année sidérale. Elle tourne sur elle-même en 24 heures. L'axe de rotation de la Terre est incliné de 23,4° par rapport à la perpendiculaire du plan de l'écliptique, ce qui produit des variations saisonnières sur la surface de la planète. Le seul satellite naturel connu de la Terre est la Lune qui commença à orbiter il y a 4,5 milliards d'années. Celle-ci provoque des marées, stabilise l'inclinaison axiale et ralentit lentement la rotation terrestre.

La Terre s'est formée il y a 4,54 milliards d'années environ et la vie apparut moins d'un milliard d'années plus tard. La planète abrite des millions d'espèces dont les humains. La biosphère de la Terre a fortement modifié l'atmosphère et les autres caractéristiques abiotique de la planète, permettant la prolifération d'organismes aérobies de même que la formation d'une couche d'ozone, qui associée au champ magnétique terrestre, bloque une partie des rayonnements solaires permettant ainsi la vie sur Terre. Les propriétés physiques de la Terre de même que son histoire géologique et son orbite ont permis à la vie de subsister durant cette période et la Terre devrait pouvoir supporter la vie durant encore au moins 500 millions d'années.

La croûte terrestre est divisée en plusieurs segments rigides appelés plaques tectoniques qui se déplacent sur des millions d'années. Environ 71 % de la surface terrestre est couverte par des océans d'eau salée qui forment l'hydrosphère avec les autres sources d'eau comme les lacs ou les nappes phréatiques. Les pôles géographiques de la Terre sont principalement recouverts de glace (inlandsis de l'Antarctique) ou de banquises. L'intérieur de la planète reste actif avec un épais manteau composé de roches plus ou moins fondues, un noyau externe liquide qui génère un champ magnétique et un noyau interne de fer solide.

La Terre a pour particularité d'être le seul endroit de l'univers connu pour abriter la vie, et accessoirement l'espèce humaine. Les cultures humaines ont développé de nombreuses représentations de la planète, dont une personnification en tant que déité, la croyance en une terre plate, la Terre en tant que centre de l'univers et la perspective moderne d'un monde en tant que système global nécessitant une gestion raisonnable.

La science qui étudie la Terre est la géologie. Compte tenu de l'influence de la vie sur la composition de l'atmosphère, des océans et des roches sédimentaires, la géologie emprunte à la biologie une partie de sa chronologie et de son vocabulaire.

Chronologie

Globalement l'histoire de la Terre est divisée en quatre intervalles de temps, dites éons :

  • L'hadéen a débuté il y a 4,567 milliards d'années, lorsque la Terre s'est formée avec les autres planètes à partir d'une nébuleuse solaire, une masse de poussières et de gaz en forme de disque détachée du Soleil en formation. C'est au début de cet éon que se sont formés la croûte terrestre, les océans, l'atmosphère et la Lune.
  • L'archéen est l'éon qui marque l'apparition de la vie. On estime qu'il a débuté il y a 3,8 milliards d'années.
  • Le protérozoïque est l'éon lié à l'apparition des premières plantes à photosynthèse. Son début remonte à 2,5 milliards d'années. La photosynthèse a eu un impact considérable sur la géologie, car elle a provoqué une crise appelée grande oxydation pendant laquelle les océans se sont chargés en oxygène après avoir été vidés de leur fer, et avant que l'oxygène ne soit émis aussi en grande quantité dans l'atmosphère.
  • Le phanérozoïque est marqué par l'apparition des premiers animaux à coquilles, et plus globalement par le début du règne animal. Il a débuté il y a 542 millions d'années environ, et s'étend jusqu'à nos jours.

Époque pré biotique

La formation de la Terre par accrétion était presque terminée en moins de 20 millions d'années. Initialement en fusion, la couche externe de la Terre s'est refroidie pour former une croûte solide lorsque l'eau commença à s'accumuler dans l'atmosphère, aboutissant aux premières pluies et aux premiers océans. La Lune s'est formée peu de temps après il y a 4,53 milliards d'années. Le consensus actuel pour la formation de la Lune est l'hypothèse de l'impact géant, lorsqu'un objet de la taille de Mars (quelquefois appelé Théia) avec environ 10 % de la masse terrestre entra en collision avec la Terre. Dans ce modèle, une partie de cet objet se serait agglomérée avec la Terre, tandis qu'une autre partie, mêlée avec peut-être 10 % de la masse totale de la Terre, aurait été éjectée dans l'espace, où elle aurait formé la Lune.

L'activité volcanique a produit une atmosphère primitive. De la vapeur d'eau condensée ayant plusieurs origines possibles, mêlée à de la glace apportée par des comètes, a produit les océans. Une combinaison de gaz à effet de serre et d'importants niveaux d'activité solaire permirent d'augmenter la température à la surface de la Terre et empêchèrent les océans de geler. Vers 3,5 milliards d'années, le champ magnétique se forma et il permit d'éviter à l'atmosphère d'être balayée par le vent solaire.

Deux principaux modèles ont été proposés pour expliquer la vitesse de croissance continentale : une croissance constante jusqu'à nos jours et une croissance rapide au début de l'histoire de la Terre. Les recherches actuelles montrent que la deuxième hypothèse est la plus probable avec une formation rapide de la croûte continentale suivie par de faibles variations de la surface globale des continents. Sur une échelle de temps de plusieurs centaines de millions d'années, les continents ou supercontinents se forment puis se divisent. C'est ainsi qu'il y a environ 750 millions d'années, le plus vieux des supercontinents connus, Rodinia, commença à se disloquer. Les continents entre lesquels il s'était divisé se recombinèrent plus tard pour former Pannotia, il y a 650-540 millions d'années, puis finalement Pangée, au Permien, qui se fragmenta il y a 180 millions d'années.

Évolution de la vie

On suppose qu'une activité chimique intense dans un milieu hautement énergétique a produit une molécule capable de se reproduire, dans un système particulier, il y a environ 4 milliards d'années. La vie elle-même serait apparue entre 200 et 500 millions d'années plus tard

Le développement de la photosynthèse, active depuis bien avant 3 (à 3,5) milliards d'années avant le présent, permit à la vie d'exploiter directement l'énergie du Soleil. Celle-ci produisit de l'oxygène qui s'accumula dans l'atmosphère, à partir d'environ 2,5 milliards d'années avant le présent, et forma la couche d'ozone (une forme d'oxygène [O3]) dans la haute atmosphère, lorsque les niveaux d'oxygène dépassèrent quelques %. Le regroupement de petites cellules entraina le développement de cellules complexes appelées eucaryotes. Les premiers organismes multicellulaires formés de cellules au sein de colonies devinrent de plus en plus spécialisés. Aidée par l'absorption des dangereux rayons ultraviolets par la couche d'ozone, des colonies bactériennes pourraient avoir colonisé la surface de la Terre, dès ces époques lointaines. Les plantes et les animaux pluricellulaires colonisèrent la terre ferme qu'à partir de la fin du Cambrien (pour les premiers végétaux, mousses, lichens et champignons) et pendant l'Ordovicien (pour les premiers végétaux vasculaires et les arthropodes), le Silurien (pour les gastéropodes ?) et le Dévonien (pour les vertébrés).

Depuis les années 1960, il a été proposé une hypothèse selon laquelle une ou une série de glaciations globales eut lieu il y a 750 à 580 millions d'années, pendant le Néoprotérozoïque, et qui couvrit la planète d'une couche de glace. Cette hypothèse a été nommée Snowball Earth (« Terre boule de neige »), et est d'un intérêt particulier parce qu'elle précède l'explosion cambrienne, quand des formes de vies multicellulaires commencèrent à proliférer.

À la suite de l'explosion cambrienne, il y a environ 535 millions d'années, cinq extinctions massives eurent lieu. La dernière extinction majeure date de 65 millions d'années, quand une météorite est entrée en collision avec la Terre, exterminant les dinosaures et d'autres grands reptiles, épargnant de plus petits animaux comme les mammifères, oiseaux, lézards, etc.

Dans les 65 millions d'années qui se sont écoulées depuis, les mammifères se sont diversifiés, l'espèce humaine s'étant développée depuis deux millions d'années. Des changements périodiques à long terme de l'orbite de la Terre, causés par l'influence gravitationnelle des autres astres, sont probablement une des causes des glaciations qui ont plus que doublé les zones polaires de la planète, périodiquement dans les derniers millions d'années.

À l'issue de la dernière glaciation, le développement de l'agriculture et, ensuite, des civilisations permit aux humains de modifier la surface de la Terre dans une courte période de temps, comme aucune autre espèce avant lui sur Terre, affectant la nature tout comme les autres formes de vie.

Futur

capture19-3-1.jpgCycle évolutif du Soleil.

Le futur de la Terre est très lié à celui du Soleil. Du fait de l'accumulation d'hélium dans le cœur du Soleil, la luminosité de l'étoile augmente lentement à l'échelle des temps géologiques. La luminosité va croître de 10 % au cours des 1,1 milliards d'années à venir et de 40 % sur les prochains 3,5 milliards d'années. Les modèles climatiques indiquent que l'accroissement des radiations atteignant la Terre aura probablement des conséquences dramatiques sur la pérennité de son climat « terrestre », dont la disparition des océans.

La Terre devrait cependant rester habitable durant encore plus de 500 millions d'années, bien que cette durée puisse passer à 2,3 milliard d'années si l'azote est retiré de l'atmosphère L'augmentation de la température terrestre va accélérer le cycle du carbone inorganique, réduisant sa concentration à des niveaux qui pourraient devenir trop faibles pour les plantes (10 ppm pour la photosynthèse du C4) dans environ 500 ou 900 millions d'années. La réduction de la végétation entrainera la diminution de la quantité d'oxygène dans l'atmosphère, ce qui provoquera la disparition progressive de la plupart des formes de vies animales. Ensuite, la température moyenne (de la Terre) augmentera plus vite dû à un emballement de l'effet de serre par la vapeur d'eau, vers 40 à 50 °C. Puis les océans s'évaporeront « rapidement » précipitant le climat de la Terre dans celui de type vénusien.

Même si le Soleil était éternel et stable, le refroidissement interne de la Terre entrainerait la baisse du niveau de CO2 du fait d'une réduction du volcanisme, et 35 % de l'eau des océans descendrait dans le manteau du fait de la baisse des échanges au niveau des dorsales océaniques.

La « fin »

Dans le cadre de son évolution, le Soleil deviendra une géante rouge dans plus de 5 milliards d'années. Les modèles prédisent qu'il gonflera jusqu'à atteindre environ 250 fois son rayon actuel.

Le destin de la Terre est moins clair. En tant que géante rouge, le Soleil va perdre environ 30 % de sa masse, donc sans effets de marée, la Terre se déplacera sur une orbite à 1,7 ua (254 316 600 km) du Soleil lorsque celui-ci atteindra sa taille maximale. La planète ne devrait donc pas être engloutie par les couches externes du Soleil même si l'atmosphère restante finira par être « soufflée » dans l'espace, et la croûte terrestre finira par fondre pour se transformer en un océan de lave, lorsque la luminosité solaire atteindra environ 5 000 fois son niveau actuel. Une simulation de 2008 indique que l'orbite terrestre va se modifier du fait des effets de marées et poussera la Terre à entrer dans l'atmosphère du Soleil où elle sera absorbée et vaporisée.

Composition et structure

La Terre est une planète tellurique, c'est-à-dire une planète essentiellement rocheuse à noyau métallique, contrairement aux géantes gazeuses, telles que Jupiter, essentiellement constituées de gaz légers (hydrogène et hélium). Il s'agit de la plus grande des quatre planètes telluriques du Système solaire, que ce soit par la taille ou la masse. De ces quatre planètes, la Terre a aussi la masse volumique globale la plus élevée, la plus forte gravité de surface, le plus puissant champ magnétique global, la vitesse de rotation la plus élevée et est probablement la seule avec une tectonique des plaques active.

La surface externe de la Terre est divisée en plusieurs segments rigides, ou plaques tectoniques, qui se déplacent lentement sur la surface sur des durées de plusieurs millions d'années. Environ 71 % de la surface est couverte d'océans d'eau salée, les 29 % restants étant des continents et des îles. L'eau liquide, nécessaire à la vie telle que nous la connaissons, est très abondante sur Terre, et aucune autre planète n'a encore été découverte avec des étendues d'eau liquide (lacs, mers, océans) à sa surface.

Forme

capture04-4-3.jpgComparaison des tailles des planètes telluriques avec de gauche à droite : Mercure, Venus, la Terre et Mars

La forme de la Terre est approchée par un ellipsoïde, une sphère aplatie aux pôles. La rotation de la Terre entraine l'apparition d'un léger bourrelet de sorte que le diamètre à l’équateur est 43 kilomètres plus long que le diamètre polaire (du pôle Nord au pôle Sud). Le diamètre moyen du sphéroïde de référence (appelé géoïde) est d'environ 12 742 kilomètres, ce qui est approximativement 40 000 kilomètres/π, car le mètre était initialement défini comme 1/10 000 000e de la distance de l'équateur au pôle nord en passant par Paris

La topographie locale dévie de ce sphéroïde idéalisé même si à grande échelle, ces variations sont faibles : La Terre a une tolérance d'environ 0,17 % par rapport au sphéroïde parfait, ce qui est moins que la tolérance de 0,22 % imposée aux boules de billard. Les plus grandes variations dans la surface rocheuse de la Terre sont l'Everest (8 848 mètres au-dessus du niveau de la mer) et la fosse des Mariannes (10 911 mètres sous le niveau de la mer). Du fait du bourrelet équatorial, les lieux les plus éloignés du centre de la Terre sont les sommets du Chimborazo en Équateur et du Huascarán au Pérou.

Composition chimique

La masse de la Terre est d'approximativement 5,98×1024 kg. Elle est principalement composée de fer (32,1 %), d'oxygène (30,1 %), de silicium (15,1 %), de magnésium (13,9 %), de soufre (2,9 %), de nickel (1,8 %), de calcium (1,5 %) et d'aluminium (1,4 %), le 1,2 % restant consistant en de légères traces d'autres éléments. Les éléments les plus denses ayant tendance à se concentrer au centre de la Terre (phénomène de différenciation planétaire), on pense que le cœur de la Terre est composé majoritairement de fer (88,8 %), avec une plus petite quantité de nickel (5,8 %), de soufre (4,5 %) et moins de 1 % d'autres éléments.

Le géochimiste F. W. Clarke a calculé que 47 % (en poids) de la croûte terrestre était faite d'oxygène, présent principalement sous forme d'oxydes, dont les principaux sont les oxydes de silicium, d'aluminium, de fer, de calcium, de magnésium, de potassium et de sodium. La silice est le constituant majeur de la croûte, sous forme de pyroxénoïdes, les minéraux les plus communs des roches magmatiques et métamorphiques. Après une synthèse basée sur l'analyse de 1 672 types de roches.

Structure interne

L'intérieur de la Terre, comme celui des autres planètes telluriques, est stratifié, c'est-à-dire organisé en couches concentriques superposées, ayant des densités croissantes quand on s'enfonce. Ces diverses couches se distinguent par leur nature pétrologique (contrastes chimiques et minéralogiques) et leurs propriétés physiques (changements d'état physique, propriétés rhéologiques). La couche extérieure de la Terre solide, fine à très fine relativement au rayon terrestre, s'appelle la croûte ; elle est solide, et chimiquement distincte du manteau, solide, sur lequel elle repose ; sous l'effet combiné de la pression et de la température, avec la profondeur, le manteau passe d'un état solide fragile (cassant, sismogène, « lithosphérique ») à un état solide ductile (plastique, « asthénosphérique », et donc caractérisé par une viscosité plus faible, quoiqu'encore extrêmement élevée). La surface de contact entre la croûte et le manteau est appelée le Moho ; il se visualise très bien par les méthodes sismiques du fait du fort contraste de vitesse des ondes sismiques, entre les deux côtés.

L'épaisseur de la croûte varie de 6 kilomètres sous les océans jusqu'à plus de 50 kilomètres en moyenne sous les continents. La croûte et la partie supérieure froide et rigide du manteau supérieur sont appelés lithosphère ; leur comportement horizontalement rigide à l'échelle du million à la dizaine de millions d'années est à l'origine de la tectonique des plaques. L'asthénosphère se trouve sous la lithosphère et est une couche convective, relativement moins visqueuse sur laquelle la lithosphère se déplace en « plaques minces ». Des changements importants dans la structure cristallographique des divers minéraux du manteau, qui sont des changements de phase au sens thermodynamique, vers respectivement les profondeurs de 410 kilomètres et de 670 kilomètres sous la surface, encadrent une zone dite de transition, définie initialement sur la base des premières images sismologiques.

Actuellement, on appelle manteau supérieur la couche qui va du Moho à la transition de phase vers 670 kilomètres de profondeur, la transition à 410 kilomètres de profondeur étant reconnue pour ne pas avoir une importance majeure sur le processus de convection mantellique, au contraire de l'autre. Et l'on appelle donc manteau inférieur la zone comprise entre cette transition de phase à 670 kilomètres de profondeur, et la limite noyau-manteau. Sous le manteau inférieur, le noyau terrestre, composé à presque 90 % de fer métal, constitue une entité chimiquement originale de tout ce qui est au-dessus, à savoir la Terre silicatée. Ce noyau est lui-même stratifié en un noyau externe liquide et très peu visqueux (viscosité de l'ordre de celle d'une huile moteur à 20 °C), qui entoure un noyau interne solide encore appelé graine. Cette graine résulte de la cristallisation du noyau du fait du refroidissement séculaire de la Terre. Cette cristallisation, par la chaleur latente qu'elle libère, est source d'une convection du noyau externe, laquelle est la source du champ magnétique terrestre. L'absence d'un tel champ magnétique sur les autres planètes telluriques laisse penser que leurs noyaux métalliques, dont les présences sont nécessaires pour expliquer les données astronomiques de densité et de moment d'inertie, sont totalement cristallisés. Selon une interprétation encore débattue de données sismologiques, le noyau interne terrestre semblerait tourner à une vitesse angulaire légèrement supérieure à celle du reste de la planète, avançant relativement de 0,1 à 0,5° par an.

capture21-2-2.jpgChaleur

La chaleur interne de la Terre est issue d'une combinaison de l'énergie résiduelle issue de l'accrétion planétaire (environ 20 %) et de la chaleur produite par les éléments radioactifs (80 %). Les principaux isotopes producteurs de chaleur de la Terre sont le potassium 40, l'uranium 238, l'uranium 235 et le thorium 232. Au centre de la planète, la température pourrait atteindre 7 000 K et la pression serait de 360 GPa. Comme la plus grande partie de la chaleur est issue de la désintégration des éléments radioactifs, les scientifiques considèrent qu'au début de l'histoire de la Terre, avant que les isotopes à courte durée de vie ne se soient désintégrés, la production de chaleur de la Terre aurait été bien plus importante. Cette production supplémentaire, deux fois plus importante qu'aujourd'hui il y a 3 milliards d'années aurait accru les gradients de températures dans la Terre et donc le rythme de la convection mantellique et de la tectonique des plaques, ce qui aurait permis la formation de roches ignées comme les komatiites qui ne sont plus formées aujourd'hui.

Principaux isotopes producteurs de chaleur actuels

Isotope

Libération de chaleur
W/kg isotope

Demi-vie
années

Concentration moyenne dans le manteau
kg isotope/kg manteau

Libération de chaleur
W/kg manteau

238U

9.46 × 105

4.47 × 109

30.8 × 109

2.91 × 1012

235U

5.69 × 104

7.04 × 108

0.22 × 109

1.25 × 1013

232Th

2.64 × 105

1.40 × 1010

124 × 109

3.27 × 1012

40K

2.92 × 105

1.25 × 109

36.9 × 109

1.08 × 1012

La perte moyenne de chaleur par la Terre est de 87 mW/m² pour une perte globale de 4.42 × 1013 W. Une portion de l'énergie thermique du noyau est transportée vers la croûte par des panaches ; une forme de convection où des roches semi-fondues remontent vers la croûte.

Ces panaches peuvent produire des points chauds et des trapps. La plus grande partie de la chaleur de la Terre est perdue à travers la tectonique des plaques au niveau des dorsales océaniques. La dernière source importante de perte de chaleur est la conduction à travers la lithosphère, la plus grande partie ayant lieu dans les océans car la croûte y est plus mince que celle des continents.

Plaques tectoniques

capture23-4-1.jpg

Les plaques tectoniques sont des segments rigides de lithosphère qui se déplacent les uns par rapports aux autres. Les relations cinématiques qui existent aux frontières des plaques peuvent être regroupées en trois domaines : des domaines de convergence où deux plaques se rencontrent, de divergence où deux plaques se séparent et des domaines de transcurrence où les plaques se déplacent latéralement les unes par rapport aux autres. Les tremblements de terre, l'activité volcanique, la formation des montagnes et des fosses océaniques sont plus fréquents le long de ces frontières. Le mouvement des plaques tectoniques est lié aux mouvements de convection ayant lieu dans le manteau terrestre

capture06-6-1.jpg Du fait du mouvement des plaques tectoniques, le plancher océanique plonge sous les bords des autres plaques. Au même moment, la remontée du magma au niveau des frontières divergentes crée des dorsales. La combinaison de ces processus permet un recyclage continuel de la lithosphère océanique qui retourne dans le manteau. Par conséquent, la plus grande partie du plancher océanique est âgée de moins de 100 millions d'années. La plus ancienne croûte océanique est localisée dans l'ouest du Pacifique et a un âge estimé de 200 millions d'années. Par comparaison, les éléments les plus anciens de la croûte continentale sont âgés de 4 030 millions d'années.

Il existe sept principales plaques, Pacifique, Nord-Américaine, Eurasienne, Africaine, Antarctique, Australienne et Sud-Américaine. Parmi les plaques importantes, on peut également citer les plaques Arabique, Caraïbe, Nazca à l'ouest de la côte occidentale de l'Amérique du Sud et la plaque Scotia dans le sud de l'océan atlantique. La plaque australienne fusionna avec la plaque indienne il y a 50 millions d'années. Les plaques océaniques sont les plus rapides : la plaque de Cocos avance à un rythme de 75 mm/an et la plaque pacifique à 52-69 mm/an. À l'autre extrême, la plus lente est la plaque eurasienne progressant à une vitesse de 21 mm/an.

Surface

Le relief de la Terre diffère énormément suivant le lieu. Environ 70,8 % de la surface du globe est recouverte par de l'eau et une grande partie du plateau continental se trouve sous le niveau de la mer. Les zones submergées ont un relief aussi varié que les autres dont une dorsale océanique faisant le tour de la Terre ainsi que des volcans sous-marins, des fosses océaniques, des canyons sous-marins, des plateaux et des plaines abyssales. Les 29,2 % non recouvertes d'eau sont composés de montagnes, de déserts, de plaines, de plateaux et d'autres géomorphologies.

La surface planétaire subit de nombreuses modifications du fait de la tectonique et de l'érosion. Les éléments de surface construits ou déformés par la tectonique des plaques sont sujets à une météorisation constante du fait des précipitations, des cycles thermiques et des effets chimiques. Les glaciations, l'érosion du littoral, la construction des récifs coralliens et les impacts météoriques contribuent également aux modifications du paysage.

capture24-4-1.jpg Relevé altimétrique et bathymétrique de la Terre. Données fournies par le National Geophysical Data Center TerrainBase Digital Terrain Model

La lithosphère continentale est composée de matériaux de faible densité comme les roches ignées : granit et andesite. Le basalte est moins fréquent et cette roche volcanique dense est le principal constituant du plancher océanique. Les roches sédimentaires se forment par l'accumulation de sédiments qui se compactent. Environ 75 % des surfaces continentales sont recouvertes de roches sédimentaires même si elles ne représentent que 5 % de la croûte. Le troisième type de roche rencontré sur Terre est la roche métamorphique, créée par la transformation d'autres types de roche en présence de hautes pressions, de hautes températures ou les deux. Parmi les silicates les plus abondants de la surface terrestre, on peut citer le quartz, le feldspath, l'amphibole, le mica, le pyroxène et l'olivine. Les carbonates courants sont la calcite (composant du calcaire) et la dolomite.

La pédosphère est la couche la plus externe de la Terre. Elle est composée de sol et est sujette au processus de formation du sol. Elle se trouve à la rencontre de la lithosphère, de l'atmosphère, de l'hydrosphère et de la biosphère. Actuellement, les zones arables représentent 13,31 % de la surface terrestre et seulement 4,71 % supportent des cultures permanentes. Près de 40 % de la surface terrestre est utilisée pour l'agriculture et l'élevage soit environ 1,3 × 107 km de cultures et 3,4 × 107 km de pâturage.

L'altitude de la surface terrestre de la Terre varie de -418 mètres dans la Mer morte à 8 848 mètres au sommet de l'Everest. L'altitude moyenne des terres émergées est de 840 mètres au-dessus du niveau de la mer.

Expansion de la terre

Une vieille théorie nouvellement remise sur le devant de la scène explique que la Terre n'aurait pas toujours eu la même taille, et qu'elle serait en expansion. Cela a pu avoir pour conséquence un rallongement des journées, à une échelle de millions d'années.

Cette théorie n'est, à ce jour, que peu reconnue par la communauté scientifique mondiale voire considérée comme de la pseudo-science.

Hydrosphèrecapture25-4-1.jpg Histogramme de l'élévation de la croûte terrestre

L'abondance de l'eau sur la surface de la Terre est une caractéristique unique qui distingue la « planète bleue » des autres planètes du Système solaire. L'hydrosphère terrestre est principalement composée par les océans mais techniquement elle inclut également les mers, les lacs, les rivières et les eaux souterraines jusqu'à une profondeur de 2 000 mètres. La Challenger Deep de la fosse des Mariannes dans l'océan pacifique est le lieu immergé le plus profond avec une profondeur de 10 911 mètres

La masse des océans est d'environ 1,35 × 1018 t soit environ 1/4 400e de la masse totale de la Terre. Les océans couvrent une superficie de 3,618 × 108 km avec une profondeur moyenne de 3 682 mètres soit un volume estimé à 1,332 × 109 km. Environ 97,5 % de l'eau terrestre est salée. Les 2,5 % restants sont composés d'eau douce mais environ 68,7 % de celle-ci est immobilisée sous forme de glace

La salinité moyenne des océans est d'environ 35 grammes de sel par kilogramme d'eau de mer (35 ‰). La plupart de ce sel fut libéré par l'activité volcanique ou par l'érosion des roches ignées. Les océans sont également un important réservoir de gaz atmosphériques dissous qui sont essentiels à la survie de nombreuses formes de vie aquatiques. L'eau de mer a une grande influence sur le climat mondial du fait de l'énorme réservoir de chaleur que constituent les océans. Des changements dans les températures océaniques peuvent entrainer des phénomènes météorologiques très importants comme El Niño

Atmosphère

La Terre est entourée d'une enveloppe gazeuse qu'elle retient par attraction gravitationnelle : l'atmosphère. L'atmosphère de la Terre est intermédiaire entre celle, très épaisse, de Vénus, et celle, très ténue, de Mars. La pression atmosphérique au niveau de la mer est en moyenne de 101 325 Pa, soit 1 atm par définition. L'atmosphère est constituée de 78,09 % d'azote, 20,95 % d'oxygène, 0,93 % d'argon et 0,039 % de dioxyde de carbone, ainsi que de divers autres gaz dont de la vapeur d'eau. La hauteur de la troposphère varie avec la latitude entre 8 kilomètres aux pôles et 17 kilomètres à l'équateur avec quelques variations résultant de facteurs météorologiques et saisonniers.

La biosphère de la Terre a fortement altéré son atmosphère. La photosynthèse à base d'oxygène apparut il y a 2,7 milliards d'années et format l'atmosphère actuelle principalement composée d'azote et d'oxygène. Ce changement permit la prolifération d'organismes aérobies de même que la formation de la couche d'ozone bloquant les rayons ultraviolets émis par le Soleil. L'atmosphère favorise également la vie en transportant la vapeur d'eau, en fournissant des gaz utiles, en faisant brûler les petites météorites avant qu'elles ne frappent la surface et en modérant les températures. Ce dernier phénomène est connu sous le nom d'effet de serre : des molécules présentes en faible quantité dans l'atmosphère bloquent la déperdition de chaleur dans l'espace et font ainsi augmenter la température globale. La vapeur d'eau, le dioxyde de carbone, le méthane et l'ozone sont les principaux gaz à effet de serre de l'atmosphère terrestre. Sans cette conservation de la chaleur, la température moyenne sur Terre serait de -18 °C par rapport aux 15 °C actuels.

Météorologie et climat

capture26-4-1.jpgCouverture nuageuse de la Terre photographiée par le satellite Moderate-Resolution Imaging Spectroradiometer de la NASA

L'atmosphère terrestre n'a pas de limite clairement définie, elle disparait lentement dans l'espace. Les trois-quarts de la masse atmosphérique sont concentrés dans les premiers 11 kilomètres de l'atmosphère. Cette couche la plus inférieure est appelée la troposphère. L'énergie du Soleil chauffe cette couche et la surface en dessous ce qui entraine une expansion du volume atmosphérique. Cet air avec une densité inférieure s'élève et est remplacée par de l'air plus dense car plus froid. La circulation atmosphérique qui en résulte est un acteur déterminant dans le climat et la météorologie du fait de la redistribution de la chaleur qu'elle implique.

Les principales bandes de circulations sont les alizés dans la région équatoriale à moins de 30° et les vents d'ouest dans les latitudes intermédiaires entre 30° et 60°. Les courants océaniques sont également importants dans la détermination du climat en particulier la circulation thermohaline qui distribue l'énergie thermique des régions équatoriales vers les régions polaires.

La vapeur d'eau générée par l'évaporation de surface est transportée par les mouvements atmosphériques. Lorsque les conditions atmosphériques permettent une élévation de l'air chaud et humide, cette eau se condense et retombe sur la surface sous forme de précipitations. La plupart de l'eau est ensuite transportée vers les altitudes inférieures par les réseaux fluviaux et retourne dans les océans ou dans les lacs. Ce cycle de l'eau est un mécanisme vital au soutien de la vie sur Terre et joue un rôle primordial dans l'érosion des reliefs terrestres. La distribution des précipitations est très variée de plusieurs mètres à moins d'un millimètre par an. La circulation atmosphérique, les caractéristiques topologiques et les gradients de températures déterminent les précipitations moyennes sur une région donnée.

La quantité d'énergie solaire atteignant la Terre diminue avec la hausse de la latitude. Aux latitudes les plus élevées, les rayons solaires atteignent la surface suivant un angle plus faible et doivent traverser une plus grande colonne d'atmosphère. Par conséquent, la température moyenne au niveau de la mer diminue d'environ 0,4 °C à chaque degré de latitude en s'éloignant de l'équateur. La Terre peut être divisée en ceintures latitudinaires de climat similaires. En partant de l'équateur, celles-ci sont les zones tropicales (ou équatoriales), subtropicales, tempérées et polaires. Le climat peut également être basé sur les températures et les précipitations. La classification de Köppen (modifiée par Rudolph Geiger, étudiant de Wladimir Peter Köppen) est la plus utilisée et définit cinq grands groupes (tropical humide, aride, tempéré, continental et polaire) qui peuvent être divisées en sous-groupes plus précis.

Haute atmosphère

capture27-3-1.jpgPhotographie montrant la Lune à travers l'atmosphère terrestre. NASA

Au-dessus de la troposphère, l'atmosphère est habituellement divisée trois couches, la stratosphère, la mésosphère et la thermosphère. Chaque couche possède un gradient thermique adiabatique différent définissant l'évolution de la température avec l'altitude. Au-delà, l'exosphère se transforme en magnétosphère, où le champ magnétique terrestre interagit avec le vent solaire. La couche d'ozone se trouve dans la stratosphère et bloque une partie des rayons ultraviolets ce qui est important pour la vie sur Terre. La ligne de Kármán, définie comme se trouvant à 100 kilomètres au-dessus de la surface terrestre, est la limite habituelle entre l'atmosphère et l'espace.

L'énergie thermique peut accroitre la vitesse de certaines particules de la zone supérieure de l'atmosphère qui peuvent ainsi échapper à la gravité terrestre. Cela entraine une lente mais constante « fuite » de l'atmosphère dans l'espace. Comme l'hydrogène non lié a une faible masse moléculaire, il peut atteindre la vitesse de libération plus facilement et disparait dans l'espace à un rythme plus élevé que celui des autres gaz. La fuite de l'hydrogène dans l'espace déplace la Terre d'un état initialement réducteur à un état actuellement oxydant. La photosynthèse fournit une source d'oxygène non lié mais la perte d'agents réducteurs comme l'hydrogène est considéré comme une condition nécessaire à l'accumulation massive d'oxygène dans l'atmosphère. Ainsi la capacité de l'hydrogène à quitter l'atmosphère terrestre aurait pu influencer la nature de la vie qui s'est développée sur la planète. Actuellement, la plus grande partie de l'hydrogène est convertie en eau avant qu'il ne s'échappe du fait de l'atmosphère riche en oxygène. La plupart de l'hydrogène s'échappant provient de la destruction des molécules de méthane dans la haute atmosphère.

Champ magnétique

capture28-5.jpgSchéma de la magnétosphère terrestre. Le vent solaire progresse de la gauche vers la droite.

Le champ magnétique terrestre a pour l'essentiel la forme d'un dipôle magnétique avec les pôles actuellement situés près des pôles géographiques de la planète. À l'équateur du champ magnétique, son intensité à la surface terrestre est de 3,05 × 10-5 T, avec un moment magnétique global de 7,91 × 1015 T m. Selon la théorie de la dynamo, le champ est généré par le cœur externe fondu où la chaleur crée des mouvements de convection au sein de matériaux conducteurs, ce qui génère des courants électriques. Ceux-ci produisent le champ magnétique terrestre. Les mouvements de convection dans le noyau externe sont organisés spatialement selon un mode spécifique de cette géométrie (colonnes de Busse), mais présentent néanmoins une composante temporelle relativement chaotique (au sens de la dynamique non-linéaire) ; bien que le plus souvent plus ou moins alignés avec l'axe de rotation de la Terre, les pôles magnétiques se déplacent et changent irrégulièrement d'alignement. Cela entraine des inversions du champ magnétique terrestre à intervalles irréguliers, approximativement plusieurs fois par million d'années pour la période actuelle, le cénozoïque. L'inversion la plus récente eut lieu il y a environ 700 000 ans

capture05-6-1.jpgLe champ magnétique forme la magnétosphère qui dévie les particules du vent solaire et s'étend jusqu'à environ treize fois le rayon terrestre en direction du Soleil. La collision entre le champ magnétique et le vent solaire forme les ceintures de Van Allen, une paire de régions toroïdales contenant un grand nombre de particules énergétiques ionisées. Lorsque, à l'occasion d'arrivées de plasma solaire plus intenses que le vent solaire moyen, par exemple lors d'événements d'éjections de masse coronale vers la Terre, la déformation de la géométrie de la magnétosphère sous l'impact de ce flux solaire, permet le processus de reconnexion magnétique, et une partie des électrons de ce plasma solaire entre dans l'atmosphère terrestre en une ceinture autour aux pôles magnétiques ; il se forme alors des aurores polaires, qui sont l'émission d'une lumière de fluorescence résultant de la désexcitation des atomes et molécules, essentiellement d'oxygène de la haute et moyenne atmosphère, excités par les chocs des électrons solaires.

Rotation

La période de rotation relative de la Terre par rapport au Soleil est d'environ 86 400 s soit un jour solaire. La période de rotation relative de la Terre par rapport aux étoiles fixes, appelé son jour stellaire par l'International Earth Rotation and Reference Systems Service (IERS), est de 86 164,098903691 secondes de temps solaire moyen (UT1) ou 23 h 56 min 4,098903691 s. Du fait de la précession des équinoxes, la période de rotation relative de la Terre, son jour sidéral est de 23 h 56 min 4,09053083288 s. Ainsi le jour sidéral est plus court que le jour stellaire d'environ 8,4 ms.

À part des météorites dans l'atmosphère et les satellites en orbite basse, le principal mouvement apparent des corps célestes dans le ciel terrestre est vers l'ouest à un rythme de 15°/h ou 15'/min. Pour les corps proches de l'équateur céleste, cela est équivalent à un diamètre apparent de la Lune ou du Soleil toutes les deux minutes.

Orbite

La Terre orbite autour du Soleil à une distance moyenne d'environ 150 millions de kilomètres suivant une période de 365,2564 jours solaires ou une année sidérale. De la Terre, cela donne un mouvement apparent du Soleil vers l'est par rapport aux étoiles à un rythme d'environ 1°/jour ou un diamètre solaire toutes les 12 heures. Du fait de ce mouvement, il faut en moyenne 24 heures, un jour solaire, à la Terre pour réaliser une rotation complète autour de son axe et que le Soleil revienne au plan méridien. La vitesse orbitale de la Terre est d'environ 29,8 km/s (107 000 km/h).

La Lune tourne avec la Terre autour d'un barycentre commun tous les 27,32 jours par rapport aux étoiles lointaines. Lorsqu'il est associé au mouvement du couple Terre-Lune autour du Soleil, la période du mois synodique, d'une nouvelle lune à une nouvelle lune est de 29,53 jours. Vu depuis le pôle céleste nord, le mouvement de la Terre, de la Lune et de leurs rotations axiales sont toutes dans le sens inverse de rotation. Depuis un point situé au-dessus du pôle nord de la Terre et du Soleil, la Terre semble tourner dans le sens inverse des aiguilles autour du Soleil. Les plans orbitaux et axiaux ne sont pas précisément alignés, l'axe de la Terre est incliné de 23,4° par rapport à la perpendiculaire au plan Terre-Soleil et le plan Terre-Lune est incliné de 5° par rapport au plan Terre-Soleil. Sans cette inclinaison, il y aurait une éclipse toutes les deux semaines, avec une alternance entre éclipses lunaires et solaires.

La sphère de Hill ou la sphère d'influence gravitationnelle de la Terre a un rayon d'environ 1 500 000 kilomètres. C'est la distance maximale à laquelle l'influence gravitationnelle de la Terre est supérieure à celle du Soleil et des autres planètes. Pour orbiter autour de la Terre, les objets doivent se trouver dans cette zone ou ils peuvent être perturbés par l'attraction gravitationnelle du Soleil.

Inclinaison de l'axe et saisons

capture30-3-1.jpgLa Terre et la Lune photographiées depuis Mars par la sonde Mars Reconnaissance Orbiter. Depuis l'espace, la Terre présente des phases similaires à celles de la Lune.

Du fait de l'inclinaison axiale de la Terre, la quantité de rayonnement solaire atteignant tout point de la surface varie au cours de l'année. Cela a pour conséquence des changements saisonniers dans le climat avec un été dans l'hémisphère nord lorsque le pôle nord pointe vers le Soleil et l'hiver lorsque le pôle pointe dans l'autre direction. Durant l'été, les jours durent plus longtemps et le Soleil monte plus haut dans le ciel. En hiver, le climat devient généralement plus froid et les jours raccourcissent. Au-delà du cercle arctique, il n'y a aucun jour durant une partie de l'année, ce qui est appelé une nuit polaire. Dans l'hémisphère sud, la situation est exactement l'inverse.

Par convention astronomique, les quatre saisons sont déterminées par les solstices, le point de l'orbite où l'inclinaison vers ou dans la direction opposée du Soleil est maximale et les équinoxes lorsque la direction de l'inclinaison de l'axe et la direction au Soleil sont perpendiculaires. Dans l'hémisphère nord, le solstice d'hiver a lieu le 21 décembre, le solstice d'été est proche du 21 juin, l'équinoxe de printemps a lieu autour du 20 mars et l'équinoxe d'automne vers le 21 septembre. Dans l'hémisphère sud, la situation est inversée et les dates des solstices d'hiver et d'été et celles des équinoxes de printemps et d'automne sont inversées.

L'angle d'inclinaison de la Terre est relativement stable au cours du temps. L'inclinaison entraine la nutation, un balancement périodique ayant une période de 18,6 années. L'orientation (et non l'angle) de l'axe de la Terre évolue et réalise un cycle complet en 25 800 années. Cette précession des équinoxes est la cause de la différence de durée entre une année sidérale et une année tropique. Ces deux mouvements sont causés par le couple qu'exercent les forces de marées de la Lune et du Soleil sur le renflement équatorial de la Terre. De plus, les pôles se déplacent périodiquement par rapport à la surface de la Terre selon un mouvement connu sous le nom d'oscillation de Chandler.

À l'époque moderne, le périhélie de la Terre a lieu vers le 3 janvier et l'aphélie vers le 4 juillet. Ces dates évoluent au cours du temps du fait de la précession et d'autres facteurs orbitaux qui suivent un schéma cyclique connu sous le nom de paramètres de Milanković.                                                                               

Lune

Caractéristiques

Diamètre

3 474,8 km

Masse

7.349 × 1022 kg

Demi-grand axe

384 400 km

Période orbitale

27 j 7 h 43,7 min

La Lune est un satellite naturel, situé à environ 380 500 kilomètres de la Terre. Relativement grand, son diamètre est environ le quart de celui de la Terre. Au sein du Système solaire, c'est l'un des plus grands satellites naturels (après Ganymède, Titan, Callisto et Io) et le plus grand d'une planète non gazeuse. De plus, c'est la plus grande lune du Système solaire par rapport à la taille de sa planète même si Charon est relativement plus grand que la planète naine Pluton. Elle est relativement proche de la taille de la planète Mercure. Les satellites naturels orbitant autour des autres planètes sont communément appelés « lunes » en référence à la Lune de la Terre.

L'attraction gravitationnelle entre la Terre et la Lune cause les marées sur Terre. Le même effet a lieu sur la Lune faisant en sorte que sa période de rotation est identique au temps qu'il lui faut pour orbiter autour de la Terre, présentant ainsi toujours la même face vers la Terre. En orbitant autour de la Terre, différentes parties du côté visible de la Lune sont illuminées par le Soleil, causant les phases lunaires.

À cause du couple des marées, la Lune s'éloigne de la Terre à un rythme d'environ 38 millimètres par an, produisant aussi l'allongement du jour terrestre de 23 microsecondes par an. Sur plusieurs millions d'années, l'effet cumulé de ces petites modifications produit d'importants changements. Durant la période du Dévonien, il y a approximativement 410 millions d'années, il y avait 400 jours dans une année, chaque jour durant 21,8 heures.

La Lune aurait eu une influence importante dans le développement de la vie en régulant de climat de la Terre. Les preuves paléontologiques et les simulations informatiques montrent que l'inclinaison de l'axe de la Terre est stabilisée par les effets de marées avec la Lune. Certains scientifiques considèrent que sans cette stabilisation contre les couples appliqués par le Soleil et les planètes sur le renflement équatorial, l'axe de rotation aurait pu être très instable ce qui aurait provoqué des changements chaotiques au cours des millions d'années comme cela semble avoir été le cas pour Mars.

Vue de la Terre, la Lune est assez éloignée pour avoir la même taille apparente que le Soleil. Le diamètre angulaire (ou l'angle solid) des deux corps est quasiment égale car même si le diamètre du Soleil est 400 fois plus grand que celui de la Lune, celle-ci est 400 fois plus rapprochée de la Terre que ce dernier. Ceci permet des éclipses solaires totales et annulaires sur Terre.

Le consensus actuel sur les origines de la Lune, l'hypothèse de l'impact géant, est celle d'un impact géant entre un planétoïde de la taille de Mars, appelé Théa, et la Terre nouvellement formée. Cette hypothèse explique en partie le fait que la composition de la Lune ressemble particulièrement à celle de la croûte terrestre.

La Terre a au moins cinq satellites co-orbitaux, dont l'astéroïde (3753) Cruithne et 2002 AA29. En 2011, on compte 931 satellites artificiels en orbite autour de la Terre.

capture32-3-1.jpgReprésentation à l'échelle de la taille et de la distance de la Terre et de la Lune.

Habitabilité

Une planète qui peut abriter la vie est dite habitable même si la vie n'en est pas originaire. La Terre fournit de l'eau liquide, un environnement où les molécules organiques complexes peuvent s'assembler et interagir et suffisamment d'énergie pour maintenir un métabolisme. La distance de la Terre au Soleil, de même que son excentricité orbitale, sa vitesse de rotation, l'inclinaison de son axe, son histoire géologique, son atmosphère accueillante et un champ magnétique protecteur contribuent également aux conditions climatiques actuelles à sa surface.

Biosphère

Les formes de vie de la planète sont parfois désignées comme formant une « biosphère ». On considère généralement que cette biosphère a commencé à évoluer il y a environ 3,5 milliards d'années. La biosphère est divisée en plusieurs biomes, habités par des groupes similaires de plantes et d'animaux. Sur terre, les biomes sont principalement séparés par des différences de latitudes, l'altitude et l'humidité. Les biomes terrestres se trouvant au-delà des cercles arctique et antarctique, en haute altitude ou dans les zones très arides sont relativement dépourvus de vie animale et végétale alors que la biodiversité est maximale dans les forêts tropicales humides.

Ressources naturelles

La Terre fournit des ressources qui sont exploitables par les humains pour divers utilisations. Certaines ne sont pas renouvelables, comme le combustible fossile, qui est difficiles à reconstituer sur une courte échelle de temps. D'importantes quantités de combustibles fossiles peuvent être obtenues de la croûte terrestre comme le charbon, le pétrole, le gaz naturel ou les hydrates de méthane. Ces dépôts sont utilisés pour la production d'énergie et en tant que matière première pour l'industrie chimique. Les minerais se sont formés dans la croûte terrestre et sont constitués de divers éléments chimiques utiles comme les métaux.

La biosphère terrestre produit de nombreuses ressources biologiques pour les humains comme de la nourriture, du bois, des médicaments, de l'oxygène et assure également le recyclage de nombreux déchets organiques. Les écosystèmes terrestres dépendent de la couche arable et de l'eau douce tandis que les écosystèmes marins sont basés sur les nutriments dissous dans l'eau. Les humains vivent également sur terre en utilisant des matériaux de construction pour fabriquer des abris. En 1993, l'utilisation humaine des terres étaient approximativement répartie ainsi :

Utilisation des terres

Terres arables

Cultures permanentes

Pâturages permanents

Forets

Zones urbaines

Autre

Pourcentage

13,13 %

4,71 %

26 %

32 %

1,5 %

30 %

 La superficie irriguée estimée en 1993 était de 2 481 250 km.

Risques environnementaux

D'importantes zones de la surface terrestre sont sujettes à des phénomènes météorologiques extrêmes comme des cyclones, des ouragans ou des typhons qui dominent la vie dans ces régions. Entre 1980 à 2000, ces événements ont causé environ 11 800 morts par an. De même, de nombreuses régions sont exposées aux séismes, aux glissements de terrain, aux éruptions volcaniques, aux tsunamis, aux tornades, aux dolines, aux blizzards, aux inondations, aux sécheresses, aux incendies de foret et autres calamités et catastrophes naturelles.

De nombreuses régions sont sujettes à la pollution de l'air et de l'eau créée par l'homme, aux pluies acides, aux substances toxiques, à la perte de végétation (surpâturage, déforestation, désertification), à la perte de biodiversité, à la dégradation des sols, à l'érosion et à l'introduction d'espèces invasives.

Selon les Nations-Unies, un consensus scientifique existe qui lie les activités humaines au réchauffement climatique du fait des émissions industrielles de dioxyde de carbone, et plus généralement des gaz à effet de serre. Cette modification du climat risque de provoquer la fonte des glaciers et des calottes glaciaires, des amplitudes de température plus extrêmes, d'importants changements de la météorologie et une élévation du niveau de la mer.

Géographie humaine

capture34-2-1.jpgLes sept continents de la Terre

La Terre compte approximativement 7 000 000 000 habitants au 31 octobre 2011. Les projections indiquent que la population mondiale atteindra 9,2 milliards en 2050. La plupart de cette croissance devrait se faire dans les pays en développement. La densité de population humaine varie considérablement autour du monde mais une majorité vit en Asie. En 2020, 60 % de la population devrait vivre dans des zones urbaines plutôt que rurales.

On estime que seul un-huitième de la surface de la Terre convient pour les humains ; trois-quarts de la Terre sont recouverts par les océans et la moitié des terres émergées sont des déserts (14 %), des hautes montagnes (27 %) ou d'autres milieux peu accueillants. L'implantation humaine permanente la plus au nord est Alert sur l'île d'Ellesmere au Canada (82°28′N). La plus au sud est la station d'Amundsen-Scott en Antarctique située près du pôle sud (90°S).

La totalité des terres émergées, à l'exception de certaines zones de l'Antarctique et du Bir Tawil non revendiqué que ce soit par l'Égypte ou le Soudan, sont revendiquées par des nations indépendantes. En 2011, on compte 204 états souverains dont 193 sont membres des Nations-Unies. De plus, il existe 59 territoires à souveraineté limitée et de nombreuses entités autonomes ou contestées. Historiquement la Terre n'a jamais connut une souveraineté s'étendant sur l'ensemble de la planète même si de nombreuses nations ont tentés d'obtenir une domination mondiale et ont échoué.

L'Organisation des Nations unies est une organisation internationale qui fut créée dans le but de régler pacifiquement les conflits entre nations. Les Nations-Unies servent principalement de lieu d'échange pour la diplomatie et le droit international public. Lorsque le consensus est obtenu entre les différents membres, une opération armée peut être envisagée.

Le premier humain à avoir orbité autour de la Terre fut Youri Gagarine le 12 avril 1961. Au total, en 2004, environ 400 personnes se sont rendues dans l'espace et douze d'entre-elles ont marché sur la Lune. En temps normal, les seuls humains dans l'espace sont ceux se trouvant dans la station spatiale internationale. Les astronautes de la mission Apollo 13 sont les humains qui se sont le plus éloignés de la Terre avec 400 171 kilomètres en 1970.

Point de vue philosophique et culturel

Dans le passé, la croyance en une terre plate fut contredite par les observations et par les circumnavigations et le modèle d'une Terre sphérique s'imposa.

À la différence des autres planètes du Système solaire, l'humanité n'a pas considéré la Terre comme un objet mobile en rotation autour du Soleil avant le XVIe siècle. La Terre a souvent été personnifiée en tant que déité, en particulier sous la forme d'une déesse. Les mythes de la création de nombreuses religions relatent la création de la Terre par une ou plusieurs divinités.

Point de vue minoritaire

Quelques groupes religieux souvent affiliés aux branches fondamentalistes du protestantisme et de l'islam avancent que leur interprétation des mythes de la création dans les textes sacrés est la vérité et que celle-ci devrait être considérée comme l'égale des hypothèses scientifiques conventionnelles concernant la formation de la Terre et le développement de la vie voire devrait les remplacer. De telles affirmations sont rejetées par la communauté scientifique et par les autres groupes religieux.

Aujourd'hui : la finitude écologique

La vision humaine concernant la Terre a évolué depuis les débuts de l'aérospatiale et la biosphère est maintenant vue selon une perspective globale. Cela est reflété dans le développement de l'écologie qui s'inquiète de l'impact de l'humanité sur la planète.

Le philosophe Dominique Bourg, spécialiste de l'éthique du développement durable, évoque la découverte de la finitude écologique de la Terre dans la nature en politique ou l'enjeu philosophique de l'écologie (2000). Estimant que cette finitude est suffisamment connue et prouvée pour qu'il soit inutile de l'illustrer, il souligne qu'elle a entraîné dans nos représentations un changement radical de la relation entre l'universel et le singulier. Alors que le paradigme moderne classique postulait que l'universel commandait le singulier, et le général le particulier, on ne peut pas y réduire la relation entre le planétaire et le local. Dans l'univers systémique de l'écologie, la biosphère (le planétaire) et les biotopes (le local) sont interdépendants. Cette interdépendance du local et du planétaire fait voler en éclats le principe moteur de la modernité, qui tendait à abolir toute particularité locale au profit de principes généraux, ce en quoi le projet moderne fut proprement utopique. La preuve expérimentale du raccordement symbolique de l'écologie à la culture a été fournie les réactions des premiers astronautes qui, en 1969, ont pu observer notre planète à partir de la Lune. Ils dirent que la Terre était belle, précieuse, et fragile. C'est-à-dire que l'Homme a le devoir de la protège.

Les concepts d'empreinte écologique et de bio capacité permettent d'appréhender les problèmes liés à la finitude écologique de la Terre.

VOIR AUSSI LES CHAPITRES : terre rare, la planète bleu la terre, l’homme

RETOUR

Créer un site gratuit avec e-monsite - Signaler un contenu illicite sur ce site